国考招警|省考招警|辅警招聘|法检招聘|公安院校|公安文职

公安院校统考
北京上海山东江苏浙江安徽吉林福建广东广西海南天津河北山西黑龙江甘肃湖北湖南河南四川重庆云南贵州西藏宁夏新疆青海陕西辽宁江西内蒙古
您所在的位置:首页 >公安院校统考 > 备考资料 >

2019年公安院校考试行测备考资料:鸡兔同笼原来就这么简单

2019-01-08 11:49:05 来源:中公警法考试网

导语:中公警法考试网更新公安院校行测考试行测技巧、行测答题技巧、行测题型讲解、行测高分技巧、行测解题技巧等招警行测备考资料,掌握更多行测提升技巧,敬请锁定行测辅导栏目加入QQ群交流群,及时获取更多考情资讯!

到底什么是鸡兔同笼问题呢?相信很多考生还有点迷糊,鸡兔同笼问题是行测理科试题中的一个重要类型,其实这类题型自古就有记载。据《孙子算经》记载:今有雉兔同笼,上有35头,下有94足,问雉兔各有几何?这就是最初的鸡兔同笼问题。当然举一反三,很多符合这类题型特征的都可归类为鸡兔同笼。那么这特征是什么呢?难道是在题目当中看到出现鸡和兔的问题,就想到这是个鸡兔同笼问题呢?答案肯定不是!接下来中公警法考试网跟大家一起来看一下鸡兔同笼问题的特征:

按照《孙子算经》的记载,题干已经告诉我们头的总数和脚的总数,并且隐含条件鸡有一个头两只脚,兔有一个头四只脚。因此我们这样归纳鸡兔同笼的特征:已知某两种事物两个属性的指标数和指标总数,分别求个数问题。在以后解题中,只要题干符合这个特征,我们就可以认定是鸡兔同笼问题。

例如:一共有20道题目,答对一道得5分,答错或不答扣一分,要答对多少道题,才能得82分?

这个题它是不是一个鸡兔同笼问题我们就看它符不符合这个特征,题中告诉我们,答对一题和答错或不答一题是两个事物,并且告诉我们事物的两个属性:题目和得分,指标数分别为对一道5分,错一道负1分,指标总数是一共20道题,一共得82分,所以它符合鸡兔同笼的特征,是一个鸡兔同笼问题。

再如:某零件加工厂按照工人完成的合格零件和不合格零件支付工资,工人每做出一个合格零件就能得到工资10元,每做一个不合格零件将被扣除5元。已知某人一天共做了12个零件。那么他在这一天做了多少个不合格的零件?

这个题是不是一个鸡兔同笼问题呢?我们也看一下它是否符合这个特征,题干告诉我们合格零件和不合格零件是两个事物,并且告诉我们事物的两个属性:个数和工资,指标数分别为:一个合格零件10元,一个不合格零件扣5元,指标总数是12个零件,但是它还缺少一个指标总数,即没有告诉我们共得的工资!所以它不符合鸡兔同笼问题,这就不是鸡兔同笼问题。我们要怎么样修改它才能变成鸡兔同笼问题呢?只要在题干中告知工资总数,然后再让我们求不合格零件或者合格零件多少个,它才可以变成鸡兔同笼问题。

我们知道了什么样的问题是鸡兔同笼问题了,该如何求解呢?

首先我们回忆一下小学阶段的学习中我们就接触过鸡兔同笼问题,最容易理解的方法也是这个时候学习到的,就是画图法。只不过当时接触的题目数据要小很多。是这样的一道题:

一个疯狂的农夫把鸡和兔子放在了一个笼子里,数了数一共有10个头,26条腿,帮帮农夫算算有几只鸡、几只兔子?

为了能让小学生清晰的记住其中的数量关系,采取了画图的方法:

1、一共有10个头,那我们就用圆圈画出10个头:

画图添加算式,清晰明了,但是我们遇到了一个问题,当题干数目较大时,比如开始我们讲的《孙子算经》记载的问题,画图就比较麻烦了,但是通过这个画图的思想,我们不难总结出,其实在给每一个头都画2条腿的过程,就是假设所有的动物全是鸡,进而找到差异进行计算的。

那么推荐给大家的方法是假设法:鸡兔同笼,只有鸡和兔两种动物,不是鸡就是兔,所以我们既可以假设全是鸡也可以假设全是兔,那么到底我们假设全是鸡还是全是兔呢?理论上假设全是鸡或兔都是可以的。

假设全是鸡,一只鸡2只脚,35个头有70只脚,而实际上题干告诉我们的脚有94只,少了24只脚,这说明不全是鸡!我们把一只鸡变成一只兔,它将多出两只脚,现在要多出24只脚来:用24÷(4-2)=12,什么意思?就是说把12鸡变成12只兔,它将会多出24只脚来,所以兔有12只,鸡就有23只,这个题我们就解答完了。可以看出用假设法解决鸡兔同笼问题还是比较简单和快捷的。

中公解析:假设全是鸡:35×2=70

实际94

少24÷ (4-2)=12(兔)

鸡:35-12=23(只)

可以看出,假设法在解决鸡兔同笼问题时是比较高效的。那么根据这个方法,一起来解决一下下面这道考试真题。

例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两个教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办培训27次,每次培训均座无虚席,当月培训1290人次,问甲教室当月共举办了多少次培训?

A.8 B.10 C.12 D.15

在甲教室培训和在乙教室培训是两个事物,并且告诉我们事物的两个属性的指标数即甲教室每次可以坐50人,乙教室每次可以坐45人;指标总数是一共培训27次,共培训1290人次,所以它符合鸡兔同笼的特征,属于鸡兔同笼问题。

甲教室 表示鸡;乙教室 表示兔;

27次 表示头;1290人次 表示脚。

中公解析:假设全是甲教室:50×27=1350

实际1290

多60÷ (50-45)=12(乙教室)

甲教室:27-12=15

归根结底,其实鸡兔同笼问题并不难,只要我们做到熟记鸡兔同笼问题的特征,判断所做题型是否属于鸡兔同笼问题;然后再用假设法解题,基本就不成问题了。

中公警法考试网认为,考生们掌握这些基础知识还远远不够,还需要大家不断夯实和练习,通过大量练习,掌握各类题型,才能做到胸有成竹。祝大家有所收获,取得优异的成绩!

近期招警考试讲座预告 19课堂
考试项目 讲座名称 讲座时间 立即听课
没有更多讲座、课程了

不能及时上网,可以预约提醒,点击右侧活动预约即可,您的信息不会显示在页面或泄露给其他人,我们将会通过短信通知您

    实用工具 
    阅读排行 
    活动预约 

    公告提醒、资料领取、课程活动等我们会第一时间通过短信通知您

    姓名:*

    电话:*

    Q Q:

    考试:*

    省份:*

     
      温馨提示

    请完善您的个人信息